Cfd & Drying Technology

JOURNALS

  1. ALVAREZ, G., BOURNET, P.-E. & FLICK, D. 2003. Two-dimensional simulation of turbulent flow and transfer through stacked spheres. International Journal of Heat and Mass Transfer, 46, 2459-2469.
  2. ALVAREZ, G. & FLICK, D. 1999. Analysis of heterogeneous cooling of agricultural products inside bins Part I: aerodynamic study. Journal of Food Engineering, 39, 227-237.
  3. ALVAREZ, G. & FLICK, D. 1999. Analysis of heterogeneous cooling of agricultural products inside bins: Part II: thermal study. Journal of Food Engineering, 39, 239-245.
  4. ALVAREZ, G. & FLICK, D. 2007. Modelling turbulent flow and heat transfer using macro-porous media approach used to predict cooling kinetics of stack of food products. Journal of Food Engineering, 80, 391-401.
  5. ANTOHE, B. V. & LAGE, J. L. 1997. A general two-equation macroscopic turbulence model for incompressible flow in porous media. International Journal of Heat and Mass Transfer, 40, 3013-3024.
  6. AWADALLA, H. S. F., EL-DIB, A. F., MOHAMAD, M. A., REUSS, M. & HUSSEIN, H. M. S. 2004. Mathematical modelling and experimental verification of wood drying process. Energy Conversion and Management, 45, 197-207.
  7. AWBI, H. B. 1989. Application of computational fluid dynamics in room ventilation. Building and Environment, 24, 73-84.
  8. BAKHTIYAROV, S. I. & SIGINER, D. A. Year. CFD simulations of flow dynamics in porous media of variable permeability arranged in series. In: 2001 ASME International Mechanical Engineering Congress and Exposition, November 11, 2001 - November 16, 2001, 2000 New York, NY, United states. American Society of Mechanical Engineers, 25-28.
  9. BARTZANAS, T., BOULARD, T. & KITTAS, C. 2002. Numerical simulation of the airflow and temperature distribution in a tunnel greenhouse equipped with insect-proof screen in the openings. Computers and Electronics in Agriculture, 34, 207-221.
  10. BEN AMARA, S., LAGUERRE, O. & FLICK, D. 2004. Experimental study of convective heat transfer during cooling with low air velocity in a stack of objects. International Journal of Thermal Sciences, 43, 1213-1221.
  11. BEUKEMA, K. J., BRUIN, S. & SCHENK, J. 1982. Heat and mass transfer during cooling and storage of agricultural products. Chemical Engineering Science, 37, 291-298.
  12. BJERG, B., MORSING, S., SVIDT, K. & ZHANG, G. 1999. Three-dimensional Airflow in a Livestock Test Room with Two-dimensional Boundary Conditions. Journal of Agricultural Engineering Research, 74, 267-274.
  13. BJERG, B., SVIDT, K., ZHANG, G. & MORSING, S. 2000. The Effects of Pen Partitions and Thermal Pig Simulators on Airflow in a Livestock Test Room. Journal of Agricultural Engineering Research, 77, 317-326.
  14. BJERG, B., SVIDT, K., ZHANG, G., MORSING, S. & JOHNSEN, J. O. 2002. Modeling of air inlets in CFD prediction of airflow in ventilated animal houses. Computers and Electronics in Agriculture, 34, 223-235.
  15. BOULET, M., MARCOS, B., DOSTIE, M. & MORESOLI, C. 2010. CFD modeling of heat transfer and flow field in a bakery pilot oven. Journal of Food Engineering, 97, 393-402.
  16. CADAVID, F., HERRERA, B. & AMELL, A. Numerical Simulation of the Flow Streams Behavior in a Self-regenerative Crucible Furnace. Applied Thermal Engineering, In Press, Accepted Manuscript.
  17. CARSON, J. K., WILLIX, J. & NORTH, M. F. 2006. Measurements of heat transfer coefficients within convection ovens. Journal of Food Engineering, 72, 293-301.
  18. CHANTELOUP, V. & MIRADE, P.-S. 2009. Computational fluid dynamics (CFD) modelling of local mean age of air distribution in forced-ventilation food plants. Journal of Food Engineering, 90, 90-103.
  19. CHEN, Q. 1996. Prediction of room air motion by Reynolds-stress models. Building and Environment, 31, 233-244.
  20. CHEN, Q. & XU, W. 1998. A zero-equation turbulence model for indoor airflow simulation. Energy and Buildings, 28, 137-144.
  21. DATTA, A. K. 2007. Porous media approaches to studying simultaneous heat and mass transfer in food processes. I: Problem formulations. Journal of Food Engineering, 80, 80-95.
  22. DE BONIS, M. V. & RUOCCO, G. 2008. A generalized conjugate model for forced convection drying based on an evaporative kinetics. Journal of Food Engineering, 89, 232-240.
  23. DE CASTRO, L. R., VIGNEAULT, C. & CORTEZ, L. A. B. 2005. Cooling performance of horticultural produce in containers with peripheral openings. Postharvest Biology and Technology, 38, 254-261.
  24. DEHGHANNYA, J., NGADI, M. & VIGNEAULT, C. Year. Mathematical modeling of transport phenomena as a package design tool for forced-air precooling of produce. In, 2008 Providence, RI. 5724-5740.
  25. DEHGHANNYA, J., NGADI, M. & VIGNEAULT, C. 2008. Simultaneous Aerodynamic and Thermal Analysis during Cooling of Stacked Spheres inside Ventilated Packages. Chemical Engineering & Technology, 31, 1651-1659.
  26. DELELE, M. A., SCHENK, A., RAMON, H., NICOLAÏ, B. M. & VERBOVEN, P. 2009. Evaluation of a chicory root cold store humidification system using computational fluid dynamics. Journal of Food Engineering, 94, 110-121.
  27. DELELE, M. A., SCHENK, A., TIJSKENS, E., RAMON, H., NICOLAÏ, B. M. & VERBOVEN, P. 2009. Optimization of the humidification of cold stores by pressurized water atomizers based on a multiscale CFD model. Journal of Food Engineering, 91, 228-239.
  28. DELELE, M. A., TIJSKENS, E., ATALAY, Y. T., HO, Q. T., RAMON, H., NICOLAÏ, B. M. & VERBOVEN, P. 2008. Combined discrete element and CFD modelling of airflow through random stacking of horticultural products in vented boxes. Journal of Food Engineering, 89, 33-41.
  29. ENDALEW, A. M., HERTOG, M., DELELE, M. A., BAETENS, K., PERSOONS, T., BAELMANS, M., RAMON, H., NICOLAÏ, B. M. & VERBOVEN, P. 2009. CFD modelling and wind tunnel validation of airflow through plant canopies using 3D canopy architecture. International Journal of Heat and Fluid Flow, 30, 356-368.
  30. ENGELMAN, M. S. 1982. FIDAP (A Fluid Dynamics Analysis Program). Advances in Engineering Software (1978), 4, 163-166.
  31. ERRIGUIBLE, A., BERNADA, P., COUTURE, F. & ROQUES, M. 2006. Simulation of Convective Drying of a Porous Medium with Boundary Conditions Provided by CFD. Chemical Engineering Research and Design, 84, 113-123.
  32. ERRIGUIBLE, A., BERNADA, P., COUTURE, F. & ROQUES, M. A. 2005. Modeling of Heat and Mass Transfer at the Boundary Between A Porous Medium and Its Surroundings. Drying Technology: An International Journal, 23, 455-472.
  33. FAN, L., RETI, H., WANG, W., LU, Z. & YANG, Z. 2008. Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands. Journal of Environmental Sciences, 20, 1415-1422.
  34. FERRUA, M. J. & SINGH, R. P. 2008. A nonintrusive flow measurement technique to validate the simulated laminar fluid flow in a packed container with vented walls. International Journal of Refrigeration, 31, 242-255.
  35. FERRUA, M. J. & SINGH, R. P. 2009. Design guidelines for the forced-air cooling process of strawberries. International Journal of Refrigeration, 32, 1932-1943.
  36. FERRUA, M. J. & SINGH, R. P. 2009. Modeling the forced-air cooling process of fresh strawberry packages, Part I: Numerical model. International Journal of Refrigeration, 32, 335-348.
  37. GEBREMEDHIN, K. G. & WU, B. X. 2003. Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. Journal of Thermal Biology, 28, 301-319.
  38. GHIAUS, A. G., MARGARIS, D. P. & PAPANIKAS, D. G. 1999. Modelling and experimentation in drying of thermolabile products. Physics and Modern Topics in Mechanical and Electrical Engineering, 159-164.
  39. GHIAUS, C. M. & GHIAUS, A. G. 1999. Evaluation of the indoor temperature field using a given air velocity distribution. Building and Environment, 34, 671-679.
  40. GOLDSTEIN, R. J., IBELE, W. E., PATANKAR, S. V., SIMON, T. W., KUEHN, T. H., STRYKOWSKI, P. J., TAMMA, K. K., HEBERLEIN, J. V. R., DAVIDSON, J. H., BISCHOF, J., KULACKI, F. A., KORTSHAGEN, U., GARRICK, S. & SRINIVASAN, V. 2006. Heat transferA review of 2003 literature. International Journal of Heat and Mass Transfer, 49, 451-534.
  41. GUARDO, A., COUSSIRAT, M., LARRAYOZ, M. A., RECASENS, F. & EGUSQUIZA, E. 2005. Influence of the turbulence model in CFD modeling of wall-to-fluid heat transfer in packed beds. Chemical Engineering Science, 60, 1733-1742.
  42. GUERROUDJ, N. & KAHALERRAS, H. 2010. Mixed convection in a channel provided with heated porous blocks of various shapes. Energy Conversion and Management, 51, 505-517.
  43. GUO, B.-Y., MALDONADO, D., ZULLI, P. & YU, A.-B. 2008. CFD modelling of liquid metal flow and heat transfer in blast furnace hearth. ISIJ International, 48, 1676-1685.
  44. HARRAL, B. B. & BOON, C. R. 1997. Comparison of Predicted and Measured Air Flow Patterns in a Mechanically Ventilated Livestock Building without Animals. Journal of Agricultural Engineering Research, 66, 221-228.
  45. HAYASHI, T. C., MALICO, I. & PEREIRA, J. F. C. 2008. Analysis of the flow at the interface of a porous media. Diffusion and Defect Data. Pt A Defect and Diffusion Forum, 283-286, 616-621.
  46. HAYES, A. M., KHAN, J. A., SHAABAN, A. H. & SPEARING, I. G. 2008. The thermal modeling of a matrix heat exchanger using a porous medium and the thermal non-equilibrium model. International Journal of Thermal Sciences, 47, 1306-1315.
  47. HOANG, M. L., VERBOVEN, P., DE BAERDEMAEKER, J. & NICOLAÏ, B. M. 2000. Analysis of the air flow in a cold store by means of computational fluid dynamicsAnalyse du débit d'air dans un entrepôt frigorifique à l'aide de la dynamique des fluides informatisée. International Journal of Refrigeration, 23, 127-140.
  48. HSU, C. T. & CHENG, P. 1990. Thermal dispersion in a porous medium. International Journal of Heat and Mass Transfer, 33, 1587-1597.
  49. ICIEK, J. & KRYSIAK, W. 2009. Effect of Air Parameters on the Quality of Dried Potato Cubes. Drying Technology: An International Journal, 27, 1316 - 1324.
  50. JAYA KRISHNA, D., BASAK, T. & DAS, S. 2008. Non-Darcy buoyancy driven flows in a fluid saturated porous medium: the use of asymptotic computational fluid dynamics (ACFD) approach. Heat and Mass Transfer, 44, 1117-1125.
  51. KADER, B. A. 1981. Temperature and concentration profiles in fully turbulent boundary layers. International Journal of Heat and Mass Transfer, 24, 1541-1544.
  52. KADER, B. A. & YAGLOM, A. M. 1972. Heat and mass transfer laws for fully turbulent wall flows. International Journal of Heat and Mass Transfer, 15, 2329-2351.
  53. KAYA, A., AYDIN, O. & DEMIRTAS, C. 2007. Concentration boundary conditions in the theoretical analysis of convective drying process. Journal of Food Process Engineering, 30, 564-577.
  54. KAYA, A., AYDIN, O. & DEMIRTAS, C. 2009. Experimental and theoretical analysis of drying carrots. Desalination, 237, 285-295.
  55. KAYA, A., AYDIN, O. & DINCER, I. 2006. Numerical modeling of heat and mass transfer during forced convection drying of rectangular moist objects. International Journal of Heat and Mass Transfer, 49, 3094-3103.
  56. KAYA, A., AYDIN, O. & DINCER, I. 2007. Numerical Modeling of Forced-Convection Drying of Cylindrical Moist Objects. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 51, 843-854.
  57. KAYA, A., AYDIN, O. & DINCER, I. 2008. Experimental and numerical investigation of heat and mass transfer during drying of Hayward kiwi fruits (Actinidia Deliciosa Planch). Journal of Food Engineering, 88, 323-330.
  58. KAYA, A., AYDıN, O. & DINCER, I. 2008. Heat and Mass Transfer Modeling of Recirculating Flows During Air Drying of Moist Objects for Various Dryer Configurations. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 53, 18-34.
  59. KLIMANEK, A. & BIAECKI, R. A. 2009. Solution of heat and mass transfer in counterflow wet-cooling tower fills. International Communications in Heat and Mass Transfer, 36, 547-553.
  60. KONDJOYAN, A. 2006. A review on surface heat and mass transfer coefficients during air chilling and storage of food products. International Journal of Refrigeration, 29, 863-875.
  61. LAGUERRE, O., BEN AMARA, S., ALVAREZ, G. & FLICK, D. 2008. Transient heat transfer by free convection in a packed bed of spheres: Comparison between two modelling approaches and experimental results. Applied Thermal Engineering, 28, 14-24.
  62. LAMNATOU, C., PAPANICOLAOU, E., BELESSIOTIS, V. & KYRIAKIS, N. Finite-volume modelling of heat and mass transfer during convective drying of porous bodies - Non-conjugate and conjugate formulations involving the aerodynamic effects. Renewable Energy, In Press, Corrected Proof.
  63. LAMNATOU, C., PAPANICOLAOU, E., BELESSIOTIS, V. & KYRIAKIS, N. 2009. Conjugate Heat and Mass Transfer from a Drying Rectangular Cylinder in Confined Air Flow. Numerical Heat Transfer, Part A: Applications: An International Journal of Computation and Methodology, 56, 379-405.
  64. LAUNDER, B. E. 1989. Second-moment closure: present… and future? International Journal of Heat and Fluid Flow, 10, 282-300.
  65. LAUNDER, B. E. & SPALDING, D. B. 1974. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3, 269-289.
  66. MARGARIS, D. P. & GHIAUS, A.-G. 2006. Dried product quality improvement by air flow manipulation in tray dryers. Journal of Food Engineering, 75, 542-550.
  67. MARGARIS, D. P. & GHIAUS, A.-G. 2007. Experimental study of hot air dehydration of Sultana grapes. Journal of Food Engineering, 79, 1115-1121.
  68. MASMOUDI, W. & PRAT, M. 1991. Heat and mass transfer between a porous medium and a parallel external flow. Application to drying of capillary porous materials. International Journal of Heat and Mass Transfer, 34, 1975-1989.
  69. MASUOKA, T. & TAKATSU, Y. 1996. Turbulence model for flow through porous media. International Journal of Heat and Mass Transfer, 39, 2803-2809.
  70. MATHIOULAKIS, E., KARATHANOS, V. T. & BELESSIOTIS, V. G. 1998. Simulation of air movement in a dryer by computational fluid dynamics: Application for the drying of fruits. Journal of Food Engineering, 36, 183-200.
  71. MERRIKH, A. A. & LAGE, J. L. 2005. Natural convection in an enclosure with disconnected and conducting solid blocks. International Journal of Heat and Mass Transfer, 48, 1361-1372.
  72. MIRADE, P. S. 2003. Prediction of the air velocity field in modern meat dryers using unsteady computational fluid dynamics (CFD) models. Journal of Food Engineering, 60, 41-48.
  73. MIRADE, P. S. & DAUDIN, J. D. 1998. A new experimental method for measuring and visualising air flow in large food plants. Journal of Food Engineering, 36, 31-49.
  74. MIRADE, P. S., ROUGIER, T., DAUDIN, J. D., PICQUE, D. & CORRIEU, G. 2006. Effect of design of blowing duct on ventilation homogeneity around cheeses in a ripening chamber. Journal of Food Engineering, 75, 59-70.
  75. MIRADE, P.-S., KONDJOYAN, A. & DAUDIN, J.-D. 2002. Three-dimensional CFD calculations for designing large food chillers. Computers and Electronics in Agriculture, 34, 67-88.
  76. MORAGA, N. O., RIQUELME, J. A. & JAURIAT, L. A. 2009. Unsteady conjugate water/air mixed convection in a square cavity. International Journal of Heat and Mass Transfer, 52, 5512-5524.
  77. MOUREH, J. & FLICK, D. 2003. Wall air-jet characteristics and airflow patterns within a slot ventilated enclosure. International Journal of Thermal Sciences, 42, 703-711.
  78. MOUREH, J. & FLICK, D. 2004. Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration, 27, 464-474.
  79. MOUREH, J. & FLICK, D. 2005. Airflow characteristics within a slot-ventilated enclosure. International Journal of Heat and Fluid Flow, 26, 12-24.
  80. MOUREH, J., MENIA, N. & FLICK, D. 2002. Numerical and experimental study of airflow in a typical refrigerated truck configuration loaded with pallets. Computers and Electronics in Agriculture, 34, 25-42.
  81. MOUREH, J., TAPSOBA, S., DERENS, E. & FLICK, D. 2009. Air velocity characteristics within vented pallets loaded in a refrigerated vehicle with and without air ducts. International Journal of Refrigeration, 32, 220-234.
  82. NAHOR, H. B., HOANG, M. L., VERBOVEN, P., BAELMANS, M. & NICOLAÏ, B. M. 2005. CFD model of the airflow, heat and mass transfer in cool stores. International Journal of Refrigeration, 28, 368-380.
  83. NALLASAMY, M. 1987. Turbulence models and their applications to the prediction of internal flows: A review. Computers & Fluids, 15, 151-194.
  84. NIELD, D. A. 1991. The limitations of the Brinkman-Forchheimer equation in modeling flow in a saturated porous medium and at an interface. International Journal of Heat and Fluid Flow, 12, 269-272.
  85. NIELD, D. A. 1997. Comments on "turbulence model for flow through porous media". International Journal of Heat and Mass Transfer, 40, 2499-2499.
  86. NORTON, T. & SUN, D.-W. 2006. Computational fluid dynamics (CFD) - an effective and efficient design and analysis tool for the food industry: A review. Trends in Food Science & Technology, 17, 600-620.
  87. OPARA, L. U. & ZOU, Q. 2007. Sensitivity analysis of a CFD modelling system for airflow and heat transfer of fresh food packaging: Inlet air flow velocity and inside-package configurations. International Journal of Food Engineering, 3.
  88. OZTOP, H. F. & AKPINAR, E. K. 2008. Numerical and experimental analysis of moisture transfer for convective drying of some products. International Communications in Heat and Mass Transfer, 35, 169-177.
  89. PACKWOOD, A. R. 2000. Flow through porous fences in thick boundary layers: Comparisons between laboratory and numerical experiments. Journal of Wind Engineering and Industrial Aerodynamics, 88, 75-90.
  90. PAK, A., MOHAMMADI, T., HOSSEINALIPOUR, S. M. & ALLAHDINI, V. 2008. CFD modeling of porous membranes. Desalination, 222, 482-488.
  91. PATANKAR, S. V. & SPALDING, D. B. 1972. A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15, 1787-1806.
  92. PATURSSON, Ø., SWIFT, M. R., TSUKROV, I., SIMONSEN, K., BALDWIN, K., FREDRIKSSON, D. W. & CELIKKOL, B. Development of a porous media model with application to flow through and around a net panel. Ocean Engineering, In Press, Corrected Proof.
  93. PRAKASH, M., TURAN, Ö. F., LI, Y., MAHONEY, J. & THORPE, G. R. 2001. Impinging round jet studies in a cylindrical enclosure with and without a porous layer: Part IILDV measurements and simulations. Chemical Engineering Science, 56, 3879-3892.
  94. PURI, V. M. & ANANTHESWARAN, R. C. 1993. The finite-element method in food processing: A review. Journal of Food Engineering, 19, 247-274.
  95. ROMKES, S. J. P., DAUTZENBERG, F. M., VAN DEN BLEEK, C. M. & CALIS, H. P. A. 2003. CFD modelling and experimental validation of particle-to-fluid mass and heat transfer in a packed bed at very low channel to particle diameter ratio. Chemical Engineering Journal, 96, 3-13.
  96. SAEIDI, S. M. & KHODADADI, J. M. 2006. Forced convection in a square cavity with inlet and outlet ports. International Journal of Heat and Mass Transfer, 49, 1896-1906.
  97. SANTOS, J. L. C., GERALDES, V., VELIZAROV, S. & CRESPO, J. G. 2007. Investigation of flow patterns and mass transfer in membrane module channels filled with flow-aligned spacers using computational fluid dynamics (CFD). Journal of Membrane Science, 305, 103-117.
  98. SCOTT, G. & RICHARDSON, P. 1997. The application of computational fluid dynamics in the food industry. Trends in Food Science & Technology, 8, 119-124.
  99. SHANKAR, V. & HAGENTOFT, C. E. 2000. Numerical investigation of natural convection in horizontal porous media heated from below - comparisons with experiments. Journal of Thermal Envelope and Building Science, 23, 318-338.
  100. SMALE, N. J., MOUREH, J. & CORTELLA, G. 2006. A review of numerical models of airflow in refrigerated food applications. International Journal of Refrigeration, 29, 911-930.
  101. SMOLKA, J., NOWAK, A. J. & RYBARZ, D. 2010. Improved 3-D temperature uniformity in a laboratory drying oven based on experimentally validated CFD computations. Journal of Food Engineering, 97, 373-383.
  102. STEEMAN, H. J., JANSSENS, A., CARMELIET, J. & DE PAEPE, M. 2009. Modelling indoor air and hygrothermal wall interaction in building simulation: Comparison between CFD and a well-mixed zonal model. Building and Environment, 44, 572-583.
  103. STEEMAN, H. J., JANSSENS, A. & DE PAEPE, M. 2009. On the applicability of the heat and mass transfer analogy in indoor air flows. International Journal of Heat and Mass Transfer, 52, 1431-1442.
  104. STEEMAN, H. J., T'JOEN, C., VAN BELLEGHEM, M., JANSSENS, A. & DE PAEPE, M. 2009. Evaluation of the different definitions of the convective mass transfer coefficient for water evaporation into air. International Journal of Heat and Mass Transfer, 52, 3757-3766.
  105. STEEMAN, H. J., VAN BELLEGHEM, M., JANSSENS, A. & DE PAEPE, M. 2009. Coupled simulation of heat and moisture transport in air and porous materials for the assessment of moisture related damage. Building and Environment, 44, 2176-2184.
  106. SUBRENAT, A., BELLETTRE, J. & LE CLOIREC, P. 2003. 3-D numerical simulations of flows in a cylindrical pleated filter packed with activated carbon cloth. Chemical Engineering Science, 58, 4965-4973.
  107. TALUKDAR, P., ISKRA, C. R. & SIMONSON, C. J. 2008. Combined heat and mass transfer for laminar flow of moist air in a 3D rectangular duct: CFD simulation and validation with experimental data. International Journal of Heat and Mass Transfer, 51, 3091-3102.
  108. TANNER, D. J., CLELAND, A. C. & OPARA, L. U. 2002. A generalised mathematical modelling methodology for the design of horticultural food packages exposed to refrigerated conditions Part 2. Heat transfer modelling and testing. International Journal of Refrigeration, 25, 43-53.
  109. TANNER, D. J., CLELAND, A. C., OPARA, L. U. & ROBERTSON, T. R. 2002. A generalised mathematical modelling methodology for design of horticultural food packages exposed to refrigerated conditions: part 1, formulation. International Journal of Refrigeration, 25, 33-42.
  110. TAPSOBA, M., MOUREH, J. & FLICK, D. 2006. Airflow patterns in an enclosure loaded with slotted pallets. International Journal of Refrigeration, 29, 899-910.
  111. TAPSOBA, M., MOUREH, J. & FLICK, D. 2007. Airflow patterns in a slot-ventilated enclosure partially loaded with empty slotted boxes. International Journal of Heat and Fluid Flow, 28, 963-977.
  112. TAPSOBA, M., MOUREH, J. & FLICK, D. 2007. Airflow patterns inside slotted obstacles in a ventilated enclosure. Computers & Fluids, 36, 935-948.
  113. TASSOU, S. A. & XIANG, W. 1998. Modelling the environment within a wet air-cooled vegetable store. Journal of Food Engineering, 38, 169-187.
  114. TEITEL, M. Using computational fluid dynamics simulations to determine pressure drops on woven screens. Biosystems Engineering, In Press, Corrected Proof.
  115. TERUEL, F. E. & RIZWAN, U. 2009. Characterization of a porous medium employing numerical tools: Permeability and pressure-drop from Darcy to turbulence. International Journal of Heat and Mass Transfer, 52, 5878-5888.
  116. TERUEL, F. E. & RIZWAN, U. 2009. A new turbulence model for porous media flows. Part I: Constitutive equations and model closure. International Journal of Heat and Mass Transfer, 52, 4264-4272.
  117. TERUEL, F. E. & RIZWAN, U. 2009. A new turbulence model for porous media flows. Part II: Analysis and validation using microscopic simulations. International Journal of Heat and Mass Transfer, 52, 5193-5203.
  118. THANH, V. T., VRANKEN, E., VAN BRECHT, A. & BERCKMANS, D. 2007. Data-based mechanistic modelling for controlling in three dimensions the temperature distribution in a room filled with obstacles. Biosystems Engineering, 98, 54-65.
  119. TRUJILLO, F. J. & PHAM, Q. T. 2006. A computational fluid dynamic model of the heat and moisture transfer during beef chilling. International Journal of Refrigeration, 29, 998-1009.
  120. TUTAR, M., ERDOGDU, F. & TOKA, B. 2009. Computational modeling of airflow patterns and heat transfer prediction through stacked layers' products in a vented box during cooling. International Journal of Refrigeration, 32, 295-306.
  121. VAFAI, K. & TIEN, C. L. 1981. Boundary and inertia effects on flow and heat transfer in porous media. International Journal of Heat and Mass Transfer, 24, 195-203.
  122. VAN DER SMAN, R. G. M. 2002. Prediction of airflow through a vented box by the Darcy-Forchheimer equation. Journal of Food Engineering, 55, 49-57.
  123. VAROL, Y., OZTOP, H. F. & AVCI, E. 2008. Estimation of thermal and flow fields due to natural convection using support vector machines (SVM) in a porous cavity with discrete heat sources. International Communications in Heat and Mass Transfer, 35, 928-936.
  124. VELAZQUEZ, A., ARIAS, J. R. & MONTANES, J. L. 2009. Pulsating flow and convective heat transfer in a cavity with inlet and outlet sections. International Journal of Heat and Mass Transfer, 52, 647-654.
  125. VERBOVEN, P., DATTA, A. K., ANH, N. T., SCHEERLINCK, N. & NICOLAÏ, B. M. 2003. Computation of airflow effects on heat and mass transfer in a microwave oven. Journal of Food Engineering, 59, 181-190.
  126. VERBOVEN, P., FLICK, D., NICOLAÏ, B. M. & ALVAREZ, G. 2006. Modelling transport phenomena in refrigerated food bulks, packages and stacks: basics and advances. International Journal of Refrigeration, 29, 985-997.
  127. VERBOVEN, P., HOANG, M. L., BAELMANS, M. & NICOLAÏ, B. M. 2004. Airflow through Beds of Apples and Chicory Roots. Biosystems Engineering, 88, 117-125.
  128. VERBOVEN, P., NICOLAÏ, B. M., SCHEERLINCK, N. & DE BAERDEMAEKER, J. 1997. The local surface heat transfer coefficient in thermal food process calculations: A CFD approach. Journal of Food Engineering, 33, 15-35.
  129. VERBOVEN, P., SCHEERLINCK, N., BAERDEMAEKER, J. D. & NICOLAÏ, B. M. 2000. Computational fluid dynamics modelling and validation of the isothermal airflow in a forced convection oven. Journal of Food Engineering, 43, 41-53.
  130. VERBOVEN, P., SCHEERLINCK, N., DE BAERDEMAEKER, J. & NICOLAÏ, B. M. 2000. Computational fluid dynamics modelling and validation of the temperature distribution in a forced convection oven. Journal of Food Engineering, 43, 61-73.
  131. VIJAYARAJ, B. & SARAVANAN, R. 2008. Numerical Modeling of Moisture and Temperature Distribution within a Rectangular Bagasse Layer Undergoing Drying. Drying Technology: An International Journal, 26, 749-758.
  132. WANG, H. & TOUBER, S. 1990. Distributed dynamic modelling of a refrigerated room. International Journal of Refrigeration, 13, 214-222.
  133. WANG, L. & SUN, D.-W. 2003. Recent developments in numerical modelling of heating and cooling processes in the food industry—a review. Trends in Food Science & Technology, 14, 408-423.
  134. XIA, B. & SUN, D.-W. 2002. Applications of computational fluid dynamics (CFD) in the food industry: a review. Computers and Electronics in Agriculture, 34, 5-24.
  135. XU, Y. & BURFOOT, D. 1999. Predicting condensation in bulks of foodstuffs. Journal of Food Engineering, 40, 121-127.
  136. XU, Y. & BURFOOT, D. 1999. Simulating the bulk storage of foodstuffs. Journal of Food Engineering, 39, 23-29.
  137. YU, H., LIAO, C.-M. & LIANG, H.-M. 2003. Scale model study of airflow performance in a ceiling slot-ventilated enclosure: isothermal condition. Building and Environment, 38, 1271-1279.
  138. ZERTAL-MÉNIA, N., MOUREH, J. & FLICK, D. 2002. Simplified modelling of air flows in refrigerated vehiclesModélisation simplifiée des coulements d'air dans un véhicule frigorifique. International Journal of Refrigeration, 25, 660-672.
  139. ZHANG, M.-L., LI, C. W. & SHEN, Y.-M. 2010. A 3D non-linear k-[epsilon] turbulent model for prediction of flow and mass transport in channel with vegetation. Applied Mathematical Modelling, 34, 1021-1031.
  140. ZOU, Q., OPARA, L. U. & MCKIBBIN, R. 2006. A CFD modeling system for airflow and heat transfer in ventilated packaging for fresh foods: I. Initial analysis and development of mathematical models. Journal of Food Engineering, 77, 1037-1047.
  141. ZOU, Q., OPARA, L. U. & MCKIBBIN, R. 2006. A CFD modeling system for airflow and heat transfer in ventilated packaging for fresh foods:. II. Computational solution, software development, and model testing. Journal of Food Engineering, 77, 1048-1058.
Unless otherwise stated, the content of this page is licensed under Creative Commons Attribution-ShareAlike 3.0 License